Part Number Hot Search : 
B2045CT HD6433 22120 1N5236 50001 QWB220 CYPRESS QWB220
Product Description
Full Text Search
 

To Download Q67040-A4463 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 SGP30N60,
Fast IGBT in NPT-technology
* 75% lower Eoff compared to previous generation combined with low conduction losses * Short circuit withstand time - 10 s * Designed for: - Motor controls - Inverter * NPT-Technology for 600V applications offers: - very tight parameter distribution - high ruggedness, temperature stable behaviour - parallel switching capability
SGB30N60 SGW30N60
C
G
E
P-TO-220-3-1 (TO-220AB)
P-TO-263-3-2 (D-PAK) P-TO-247-3-1 (TO-263AB) (TO-247AC)
* Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/ Type SGP30N60 SGB30N60 SGW30N60 Maximum Ratings Parameter Collector-emitter voltage DC collector current TC = 25C TC = 100C Pulsed collector current, tp limited by Tjmax Turn off safe operating area VCE 600V, Tj 150C Gate-emitter voltage Avalanche energy, single pulse IC = 30 A, VCC = 50 V, RGE = 25 , start at Tj = 25C Short circuit withstand time Power dissipation TC = 25C Operating junction and storage temperature Tj , Tstg -55...+150 C
1)
VCE 600V
IC 30A
VCE(sat) 2.5V
Tj 150C
Package TO-220AB TO-263AB TO-247AC
Ordering Code Q67040-A4463 Q67041-A4713 Q67040-S4237
Symbol VCE IC
Value 600 41 30
Unit V A
ICpul s VGE EAS
112 112 20 165 V mJ
tSC Ptot
10 250
s W
VGE = 15V, VCC 600V, Tj 150C
1)
Allowed number of short circuits: <1000; time between short circuits: >1s. 1 Jul-02
SGP30N60,
Thermal Resistance Parameter Characteristic IGBT thermal resistance, junction - case Thermal resistance, junction - ambient SMD version, device on PCB
1)
SGB30N60 SGW30N60
Max. Value Unit
Symbol
Conditions
RthJC RthJA RthJA TO-220AB TO-247AC TO-263AB
0.5 62 40 40
Electrical Characteristic, at Tj = 25 C, unless otherwise specified Parameter Static Characteristic Collector-emitter breakdown voltage Collector-emitter saturation voltage V ( B R ) C E S V G E = 0V , I C = 5 00 A VCE(sat) V G E = 15 V , I C = 30 A T j =2 5 C T j =1 5 0 C Gate-emitter threshold voltage Zero gate voltage collector current VGE(th) ICES I C = 70 0 A , V C E = V G E V C E = 60 0 V, V G E = 0 V T j =2 5 C T j =1 5 0 C Gate-emitter leakage current Transconductance Dynamic Characteristic Input capacitance Output capacitance Reverse transfer capacitance Gate charge Internal emitter inductance measured 5mm (0.197 in.) from case Short circuit collector current
2)
Symbol
Conditions
Value min. 600 1.7 3 Typ. 2.1 2.5 4 20 1600 150 92 140 7 13 300 max. 2.4 3.0 5
Unit
V
A 40 3000 100 1920 180 110 182 nC nH A nA S pF
IGES gfs Ciss Coss Crss QGate LE IC(SC)
V C E = 0V , V G E =2 0 V V C E = 20 V , I C = 30 A V C E = 25 V , V G E = 0V , f= 1 MH z V C C = 48 0 V, I C =3 0 A V G E = 15 V T O - 22 0A B T O - 24 7A C V G E = 15 V ,t S C 10 s V C C 6 0 0 V, T j 15 0 C
Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm (one layer, 70m thick) copper area for collector connection. PCB is vertical without blown air. 2) Allowed number of short circuits: <1000; time between short circuits: >1s. 2 Jul-02
1)
2
SGP30N60,
Switching Characteristic, Inductive Load, at Tj=25 C Parameter IGBT Characteristic Turn-on delay time Rise time Turn-off delay time Fall time Turn-on energy Turn-off energy Total switching energy td(on) tr td(off) tf Eon Eoff Ets T j =2 5 C , V C C = 40 0 V, I C = 3 0 A, V G E = 0/ 15 V , R G =11 , 1) L = 18 0 nH , 1) C = 90 0 pF Energy losses include "tail" and diode reverse recovery. Symbol Conditions
SGB30N60 SGW30N60
Value min. typ. 44 34 291 58 0.64 0.65 1.29 max. 53 40 349 70 0.77 0.85 1.62 mJ Unit
ns
Switching Characteristic, Inductive Load, at Tj=150 C Parameter IGBT Characteristic Turn-on delay time Rise time Turn-off delay time Fall time Turn-on energy Turn-off energy Total switching energy td(on) tr td(off) tf Eon Eoff Ets T j =1 5 0 C V C C = 40 0 V, I C = 3 0 A, V G E = 0/ 15 V , R G = 1 1 , 1) L = 18 0 nH , 1) C = 90 0 pF Energy losses include "tail" and diode reverse recovery. 44 34 324 67 0.98 0.92 1.90 53 40 389 80 1.18 1.19 2.38 mJ ns Symbol Conditions Value min. typ. max. Unit
1)
Leakage inductance L an d Stray capacity C due to dynamic test circuit in Figure E. 3 Jul-02
SGP30N60,
160A
SGB30N60 SGW30N60
tp=4s 15s
Ic
140A 120A
100A
IC, COLLECTOR CURRENT
IC, COLLECTOR CURRENT
100A 80A TC=80C 60A 40A 20A 0A 10Hz TC=110C
10A
50s 200s 1ms
1A DC
Ic
0.1A 1V 10V 100V
100Hz
1kHz
10kHz
100kHz
1000V
f, SWITCHING FREQUENCY Figure 1. Collector current as a function of switching frequency (Tj 150C, D = 0.5, VCE = 400V, VGE = 0/+15V, RG = 11)
VCE, COLLECTOR-EMITTER VOLTAGE Figure 2. Safe operating area (D = 0, TC = 25C, Tj 150C)
300W
60A
250W
50A
Limited by bond wire
200W
IC, COLLECTOR CURRENT
50C 75C 100C 125C
Ptot, POWER DISSIPATION
40A
150W
30A
100W
20A
50W
10A
0W 25C
0A 25C
50C
75C
100C
125C
TC, CASE TEMPERATURE Figure 3. Power dissipation as a function of case temperature (Tj 150C)
TC, CASE TEMPERATURE Figure 4. Collector current as a function of case temperature (VGE 15V, Tj 150C)
4
Jul-02
SGP30N60,
90A 80A 70A 90A 80A 70A
SGB30N60 SGW30N60
IC, COLLECTOR CURRENT
60A 50A 40A 30A 20A 10A 0A 0V
IC, COLLECTOR CURRENT
VGE=20V 15V 13V 11V 9V 7V 5V
60A 50A 40A 30A 20A 10A 0A 0V
VGE=20V 15V 13V 11V 9V 7V 5V
1V
2V
3V
4V
5V
1V
2V
3V
4V
5V
VCE, COLLECTOR-EMITTER VOLTAGE Figure 5. Typical output characteristics (Tj = 25C)
VCE, COLLECTOR-EMITTER VOLTAGE Figure 6. Typical output characteristics (Tj = 150C)
90A 80A
Tj=+25C -55C +150C
VCE(sat), COLLECTOR-EMITTER SATURATION VOLTAGE
100A
4.0V
3.5V
IC = 60A
IC, COLLECTOR CURRENT
70A 60A 50A 40A 30A 20A 10A 0A 0V
3.0V
2.5V
IC = 30A
2.0V
1.5V
2V
4V
6V
8V
10V
1.0V -50C 0C 50C 100C 150C
VGE, GATE-EMITTER VOLTAGE Figure 7. Typical transfer characteristics (VCE = 10V)
Tj, JUNCTION TEMPERATURE Figure 8. Typical collector-emitter saturation voltage as a function of junction temperature (VGE = 15V)
5
Jul-02
SGP30N60,
SGB30N60 SGW30N60
td(off)
1000ns
1000ns
td(off)
t, SWITCHING TIMES
100ns
t, SWITCHING TIMES
tf
100ns
tf td(on) tr
td(on) tr
10ns 10A 20A 30A 40A 50A 60A
10ns 0
10
20
30
40
IC, COLLECTOR CURRENT Figure 9. Typical switching times as a function of collector current (inductive load, Tj = 150C, VCE = 400V, VGE = 0/+15V, RG = 11, Dynamic test circuit in Figure E)
RG, GATE RESISTOR Figure 10. Typical switching times as a function of gate resistor (inductive load, Tj = 150C, VCE = 400V, VGE = 0/+15V, IC = 30A, Dynamic test circuit in Figure E)
1000ns
5.5V
VGE(th), GATE-EMITTER THRESHOLD VOLTAGE
5.0V 4.5V 4.0V 3.5V 3.0V 2.5V 2.0V typ. max.
td(off)
t, SWITCHING TIMES
100ns tf tr td(on)
min.
10ns 0C
50C
100C
150C
-50C
0C
50C
100C
150C
Tj, JUNCTION TEMPERATURE Figure 11. Typical switching times as a function of junction temperature (inductive load, VCE = 400V, VGE = 0/+15V, IC = 30A, RG = 11, Dynamic test circuit in Figure E)
Tj, JUNCTION TEMPERATURE Figure 12. Gate-emitter threshold voltage as a function of junction temperature (IC = 0.7mA)
6
Jul-02
SGP30N60,
SGB30N60 SGW30N60
5.0mJ 4.5mJ
*) Eon and Ets include losses due to diode recovery.
4.0mJ
Ets*
3.5mJ
*) Eon and Ets include losses due to diode recovery.
E, SWITCHING ENERGY LOSSES
E, SWITCHING ENERGY LOSSES
4.0mJ 3.5mJ 3.0mJ 2.5mJ 2.0mJ 1.5mJ 1.0mJ 0.5mJ 0.0mJ 10A 20A 30A 40A 50A 60A 70A Eon* Eoff
3.0mJ 2.5mJ 2.0mJ 1.5mJ 1.0mJ 0.5mJ 0.0mJ 0 Eoff Eon* Ets*
10
20
30
40
IC, COLLECTOR CURRENT Figure 13. Typical switching energy losses as a function of collector current (inductive load, Tj = 150C, VCE = 400V, VGE = 0/+15V, RG = 11, Dynamic test circuit in Figure E)
RG, GATE RESISTOR Figure 14. Typical switching energy losses as a function of gate resistor (inductive load, Tj = 150C, VCE = 400V, VGE = 0/+15V, IC = 30A, Dynamic test circuit in Figure E)
3.0mJ
10 K/W
0
2.5mJ
ZthJC, TRANSIENT THERMAL IMPEDANCE
*) Eon and Ets include losses due to diode recovery.
D=0.5
-1
E, SWITCHING ENERGY LOSSES
0.2 0.1 0.05 0.02
10 K/W
2.0mJ
Ets*
1.5mJ
10 K/W 0.01
-2
1.0mJ
Eon* Eoff
10 K/W
-3
R,(1/W) 0.3681 0.0938 0.0380
R1
, (s)= 0.0555 1.26*10-3 1.49*10-4
R2
0.5mJ
single pulse
C 1= 1/R 1 C 2= 2/R 2
0.0mJ 0C
50C
100C
150C
10 K/W 1s
-4
10s
100s
1ms
10ms 100ms
1s
Tj, JUNCTION TEMPERATURE Figure 15. Typical switching energy losses as a function of junction temperature (inductive load, VCE = 400V, VGE = 0/+15V, IC = 30A, RG = 11, Dynamic test circuit in Figure E)
tp, PULSE WIDTH Figure 16. IGBT transient thermal impedance as a function of pulse width (D = tp / T)
7
Jul-02
SGP30N60,
25V
SGB30N60 SGW30N60
20V
120V 480V
1nF
Ciss
VGE, GATE-EMITTER VOLTAGE
15V
C, CAPACITANCE
Coss 100pF Crss
10V
5V
0V 0nC
50nC
100nC
150nC
200nC
10pF 0V
10V
20V
30V
QGE, GATE CHARGE Figure 17. Typical gate charge (IC = 30A)
VCE, COLLECTOR-EMITTER VOLTAGE Figure 18. Typical capacitance as a function of collector-emitter voltage (VGE = 0V, f = 1MHz)
25 s
500A
20 s
IC(sc), SHORT CIRCUIT COLLECTOR CURRENT
450A 400A 350A 300A 250A 200A 150A 100A 50A 0A 10V 12V 14V 16V 18V 20V
tsc, SHORT CIRCUIT WITHSTAND TIME
15 s
10 s
5 s
0 s 10V
11V
12V
13V
14V
15V
VGE, GATE-EMITTER VOLTAGE Figure 19. Short circuit withstand time as a function of gate-emitter voltage (VCE = 600V, start at Tj = 25C)
VGE, GATE-EMITTER VOLTAGE Figure 20. Typical short circuit collector current as a function of gate-emitter voltage (VCE 600V, Tj = 150C)
8
Jul-02
SGP30N60,
SGB30N60 SGW30N60
dimensions [mm] min max 10.30 15.95 0.86 3.89 3.00 6.80 14.00 4.75 0.65 1.32 min 0.3819 0.5858 0.0256 0.1398 0.1024 0.2362 0.5118 0.1713 0.0150 0.0374 [inch] max 0.4055 0.6280 0.0339 0.1531 0.1181 0.2677 0.5512 0.1870 0.0256 0.0520
TO-220AB
symbol
A B C D E F G H K L M N P T
9.70 14.88 0.65 3.55 2.60 6.00 13.00 4.35 0.38 0.95
2.54 typ. 4.30 1.17 2.30 4.50 1.40 2.72
0.1 typ. 0.1693 0.0461 0.0906 0.1772 0.0551 0.1071
TO-263AB (D2Pak)
symbol min A B C D E F G H K L M N P Q R S T U V W X Y Z 9.80 0.70 1.00 1.03 [mm]
dimensions [inch] max 10.20 1.30 1.60 1.07 min 0.3858 0.0276 0.0394 0.0406 max 0.4016 0.0512 0.0630 0.0421
2.54 typ. 0.65 0.85
0.1 typ. 0.0256 0.0335
5.08 typ. 4.30 1.17 9.05 2.30 4.50 1.37 9.45 2.50
0.2 typ. 0.1693 0.0461 0.3563 0.0906 0.1772 0.0539 0.3720 0.0984
15 typ. 0.00 4.20 0.20 5.20
0.5906 typ. 0.0000 0.1654 0.0079 0.2047
8 max 2.40 0.40 10.80 1.15 6.23 4.60 9.40 16.15 3.00 0.60
8 max 0.0945 0.0157 0.1181 0.0236
0.4252 0.0453 0.2453 0.1811 0.3701 0.6358
9
Jul-02
SGP30N60,
SGB30N60 SGW30N60
dimensions [mm] min max 5.28 2.51 2.29 1.32 2.06 3.18 min 0.1882 0.0902 0.0701 0.0429 0.0681 0.1051 [inch] max 0.2079 0.0988 0.0902 0.0520 0.0811 0.1252
TO-247AC
symbol
A B C D E F G H K L M N P Q
4.78 2.29 1.78 1.09 1.73 2.67
0.76 max 20.80 15.65 5.21 19.81 3.560 21.16 16.15 5.72 20.68 4.930
0.0299 max 0.8189 0.6161 0.2051 0.7799 0.1402 0.8331 0.6358 0.2252 0.8142 0.1941
3.61 6.12 6.22
0.1421 0.2409 0.2449
10
Jul-02
SGP30N60,
1
Tj (t) p(t)
SGB30N60 SGW30N60
2
r2 r1
n
rn
r1
r2
rn
TC
Figure D. Thermal equivalent circuit
Figure A. Definition of switching times
Figure B. Definition of switching losses
Figure E. Dynamic test circuit Leakage inductance L =180nH an d Stray capacity C =900pF.
11
Jul-02
SGP30N60,
Published by Infineon Technologies AG, Bereich Kommunikation St.-Martin-Strasse 53, D-81541 Munchen (c) Infineon Technologies AG 2000 All Rights Reserved. Attention please!
SGB30N60 SGW30N60
The information herein is given to describe certain components and shall not be considered as warranted characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Infineon Technologies is an approved CECC manufacturer. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
12
Jul-02


▲Up To Search▲   

 
Price & Availability of Q67040-A4463

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X